OPERATING AND SERVICE MANUAL

H/P Part No. 162B-901
MODEL 162B AND SPECIFICATION HO2-162B SERIAL PREFIXED: 251-

DUAL TRACE VERTICAL AMPLIFIER

MANUAL CHANGES

MODEL 162B \&
Specif. H02-162B
DUAL-TRACE VERTICAL AMPLIFIER
Manual Serial Prefixed: 251Manual Printed: MAR 1963

Make all changes in this manual according to the Errata below. Also check the following table for your instrument serial prefix (3 digits) and/or serial number (8 digits) and make any listed change(s) in the manual:
Serial Prefix or Number

Make Manual Changes	Serial Prefix or Number	Make Manual Changes	
$228-00126$ to 00150	1 \& Errata		
$228-00101$ to 00125	Errata only		

ERRATA	Page 5-6, Figure 5-5, C101 should be -UP; C102 should be +UP. Page 5-7, Paragraph 5-34, Step h. should read "Channel A POLARITY -UP" Step j. should read "Channel A POLARITY +UP" Page 5-10, Figure 5-9, C126, C226: Change value to 3.3 PF . Section VI, Replaceable Parts C126, C226: Change (bep Stock No. to 0150-0059.

CHANGE 1 Page 5-11/5-12, Figure 5-10, Change both VERNIER circuits as shown below in Figure 1.
Section VI, Replaceable Parts, H02-162B only:

V101-103, 201-203, 301-303: Change to tube type 7308, (6) Stock No. 1932-0032. 162B and H02-162B:

Add S104, NSR, part of R123.
Add S204, NSR, part of R223.

FIGURE I.

TABLE OF CONTENTS

Section Page Section
V MAINTENANCE 5-1
I GENERAL INFORMATION 1-1
1-1. Description and Purpose 1-1
1-4. Instrument Identification 1-1
II INSTALLATION 2-1
2-1. Incoming Quality Control Inspection 2-1
2-4. Storage and Reshipment 2-1
2-6. Installation 2-1
III OPERATING INSTRUCTIONS 3-1
3-1. Introduction 3-1
3-3. Controls 3-1
3-12. Single Trace Operation 3-2
3-14. Dual Trace Operation 3-2
3-18. Differential Operation 3-2
3-20. Input Considerations 3-2
IV PRINCIPLES OF OPERATION 4-1
4-1. Introduction 4-1
4-3. Circuit Details 4-1
4-13. Electronic Switch 4-2
5-1. Introduction 5-1
5-3. Performance Check 5-1
5-6. Preliminary Procedure 5-1
5-7. Single Channel Operation 5-2
5-8. Alternate Operation 5-2
5-9. Chopped Operation 5-2
5-10. Sensitivity Calibration 5-2
5-11. Vertical Position Range 5-2
5-12. Dynamic Range 5-3
5-13. Common Mode Rejection 5-3
5-14. Rise Time 5-3
5-15. Bandwidth 5-3
5-16. Troubleshooting 5-3
5-22. Repair 5-4
5-26. Adjustment 5-6
5-30. Preliminary Settings 5-6
5-32. Vertical Position 5-6
5-33. Gain 5-6
5-34. Amplifier Input Capacitance 5-7
5-35. Attenuator Compensation 5-7
5-36. Attenuator Input Capacitance 5-7
5-37. Pulse Response 5-8
VI REPLACEABLE PARTS. 6-1
6-1. Introduction. 6-1
6-4. Ordering Information 6-1

LIST OF ILLUSTRATIONS

Number	- Title Page	Number	Title	Page
1-1.	Model 162B Dual Trace Vertical	5-1.	Parts Location, Channel A Attenuator	5-4
	Amplifier . 1-0	5-2.	Parts Location, Channel B Attenuator	5-4
3-1.	Control Location 3-3	5-3.	Parts Location, Top. . .	5
3-2.	Bal. and Sens. Cal. Adjustment 3-4	5-4.	Parts Location, Left Side	
3-3.	Single Trace Operation. 3-5	5-5.	Adjustment Location	5-6
3-4.	Dual Trace Operation 3-6	5-6.	Attenuator Compensation	
3-5.	A-B Operation 3-7		Adjustment Location.	5-7
4-1.	Dual Trace Amplifier Block Diagram . . 4-0	5-7.	Attenuator Input Capacitance	
4-2.	Attenuator Simplified Schematic 4-0		Adjustment Location	
4-3.	Amplifier Simplified Schematic 4-1	5-8.	Pulse Response Adjustment Location	5-8
4-4.	Constant Current Generator 4-2	5-9.	Attenuator Schematic	-10
4-5.	Electronic Switch 4-3	5-10.	Amplifier Schematic .	5-11

LIST OF TABLES

Number	r Title	Page	Number	r Title	Page
1-1.	Specifications .	1-1	5-4.	Unbalance	5-4
			5-5.	Recommended Adjustments Following	
3-1.	Pulse Width vs Sag	3-1		Tube or Diode Replacement	5-5
3-1.	Pulse Width vs Sag		5-6.	Attenuator Compensation. . .	5-7
			5-7.	Attenuator Input Capacitance	5-8
5-1.	Recommended Test Equipment	5-1			
5-2.	Sensitivity Calibration		6-1.	Reference Designation Index	6-2
5-3.	Trouble Localization.	5-3	6-2.	Replaceable Parts	6-9

Figure 1-1. Model 162B Dual Trace Vertical Amplifier

SECTION I

GENERAL INFORMATION

1-1. DESCRIPTION AND PURPOSE.

1-2. The Hewlett-Packard Model 162B Dual Trace Vertical Amplifier is a wide-band vertical amplifier designed to be used with the 50 Models 160B and 170A Oscilloscopes. It provides calibrated sensitivity with 30 megacycle bandwidth and provides the capability of viewing two traces simultaneously. The two channels may also be combined in differential operation, with the difference signal displayed.

1-3. The information in this manual also applies to the Specification HO2-162B, which is identical to the Model 162B except that all tubes and semiconductors
are MIL approved types. Both units meet the environmental requirements of MIL-E-16400.

1-4. INSTRUMENT IDENTIFICATION.

1-5. Hewlett-Packard instruments use an eight-digit, two-section serial number. The first three digits form the serial prefix, which remains the same until a change is made in the instrument. If the serial prefix on your instrument does not agree with that shown on the title page of this manual, change sheets will describe differences between your instrument and this manual.

Table 1-1. Specifications

MODE OF OPERATION

1. Channel A alone.
2. Channel B alone.
3. Channels A and B displayed on alternate sweeps.
4. Channels A and B displayed by electronic switching at 200 kc rate, with blanking during switching.
5. Channel A minus Channel B (differential input).

EACH CHANNEL

Sensitivity Range: $0.05 \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$. Nine calibrated ranges in $1,2,5,10$ sequence. Vernier extends minimum sensitivity to at least 50 v / cm and provides continuous adjustment between ranges. A sensitivity calibration adjustment for each channel is provided on the instrument front panel.

Attenuator Accuracy: $\pm 3 \%$.
Pass Band:
In $170 \mathrm{~A}-\mathrm{DC}$ coupled: dc to 30 mc . AC coupled: 2 cps to 30 mc .
In 160B-DC coupled: dc to 15 mc . AC coupled: 2 cps to 15 mc .

Rise Time: Less than 12 nsec in 170A, and 23 nsec in 160B.

Dynamic Range: Input amplifiers may be overloaded by 18 cm signal without causing noticeable signal distortion.

Vertical Position Control Range: $\pm 9 \mathrm{~cm}$.

Input Impedance: 1 megohm (nominal) shunted by 28 pf.

Input Capacitor Rating: 600 vdc
Polarity of Presentation: + up or - up, selectable.

DIFFERENTIAL INPUT

Both inputs, with their associated attenuators, may be switched to one channel to give differential input. The input attenuators may be set separately to allow mixing signals of different levels.

Common Mode Rejection: At least 40 db at maximum sensitivity up to 1 mc , or 30 db when using attenuators.

GENERAL

Weight: Net 5 lb .
Power: Supplied by Model 160B/170A Oscilloscopes.
Accessories Available:
10001 A Probe, $10: 1$ divider (2 supplied with 160B/170A Oscilloscope).
10001B Probe, $10: 1$ divider, 10 feet (3.05 m) long cable.
10002A Probe, 50:1 divider.
10002B Probe, 50:1 divider, 10 feet (3.05 m) long cable.
10110 A Adaptor, binding post to male BNC

SECTION II
 INSTALLATION

2-1. INCOMING QUALITY CONTROL INSPECTION.

2-2. MECHANICAL INSPECTION. Upon receipt of your Model 162B, unpack it, check the contents against the packing slip and inspect the instrument for mechanical damage. If the instrument is damaged in any way, notify the carrier immediately (refer to the warranty on the inside back cover of this manual). Your local Hewlett-Packard Engineering representative is prepared to give you assistance with any problem involving this instrument and its application.

2-3. PERFORMANCE CHECK. Make the performance check as outlined in paragraph 5-3 of this manual.

2-4. STORAGE AND RESHIPMENT.

$2-5$. Following is a general guide for repackaging an instrument for storage or reshipment. If there are any questions involving the packaging materials to be used, contact an authorized Hewlett-Packard Engineering representative.
a. Wrap the instrument in heavy paper or plastic before placing it in the shipping container.
b. Use plenty of packing material around all sides of the instrument and protect panel faces with cardboard strips.
c. Use a heavy cardboard carton or wooden box to house the instrument and use heavy tape or metal straps to seal the container.
d. Mark the packing box, "FRAGILE-DELICATE INSTRUMENT'".

2-6. INSTALLATION.

2-7. The 54 Model 162 B is designed to be plugged into the vertical amplifier compartment of the Models 160B or 170A Oscilloscope. To install the Model 162B, slide it into the vertical amplifier compartment and lock it into place with the LOCK knob on the front panel. All necessary connections between the Model 162B and the Model 160B/170A are automatically completed.

SECTION III OPERATING INSTRUCTIONS

3-1. INTRODUCTION.

3-2. The Model 162B may be used in five modes, selectable by a front panel control. The five modes are: Channel A only, Channel B only, Channels A and B on alternate sweeps, Channels A and B chopped on the same sweep, and Channel A minus Channel B (differential mode). Each channel has a polarity switch, position control, and attenuator with continuous vernier.

3-3. CONTROLS.

3-4. The front panel control locations are shown in figure 3-1. The controls for each channel have identical locations, therefore only the controls for Channel A are identified.

3-5. AC-DC. The AC-DC switch selects either direct or capacitive coupling of the input signal. The AC position is useful for observing small ac signals superimposed on a high dc ievel, such as power supply ripple. In the DC position the amplifier is direct-coupled, allowing accurate measurements of dc or low-frequency ac signals. The lower -3 db
frequency in the AC position is 2 cps ; if square waves or pulses of long duration are to be observed without sag, the DC position should be used. Table 3-1 shows the percentage of sag for various pulse widths.

Table 3-1. Pulse Width vs Sag

Width (sec.)	.001	.002	.005	.01	.02	.05	.1
\% SAG	1	2	5	9	18	39	63

Note

In the AC position the attenuator accuracy as specified in table $1-1$ is retained to approximately 20 cps .

3-6. SENSITIVITY. The SENSITIVITY control is calibrated in volts/cm; if the VERNIER control is in the CALIBRATED position, the trace height may be read directly in volts.

3-7. VERNIER. The VERNIER control provides continuous adjustment of the deflection sensitivity, and allows the display to be set to any arbitrary height. Minimum sensitivity can be set to at least $50 \mathrm{v} / \mathrm{cm}$.

3-8. SENS. CAL. This front panel screwdriver adjustment allows the calibration of the Model 162B to be set using an external voltage standard or the calibrator of the Model 160B/170A. A step-by-step procedure for this adjustment is outlined in figure 3-2.

3-9. BAL. The BAL. control balances the amplifier so that no vertical shift of the trace occurs when the VERNIER control is operated. A step-by-step procedure for BAL. is outlined in figure 3-2.

3-10. VERTICAL POSITION. The VERTICAL POSITION control has a range of $\pm 9 \mathrm{~cm}$., so that offscreen portions of the trace may be brought into view.

3-11. POLARITY. The POLARITY switch reverses the polarity of the trace on the screen. Thus, in the -UP position, a negative voltage causes an upward deflection.

3-12. SINGLE TRACE OPERATION.

3-13. The vertical presentation switch allows selection of either Channel A or Channel B for presentation on the screen. For step-by-step operating procedure, refer to figure 3-3.

3-14. DUAL TRACE OPERATION.

$3-15$. The vertical presentation switch also selects either of two modes of dual trace operation, CHOPPED or ALTERNATE. For step-by-step operating procedure refer to figure 3-4.

3-16. CHOPPED. In this mode of operation the two channels are electronically switched at approximately 200 kc on a single sweep. Accurate time difference or phase comparisons may be made in this mode, since both signals occur on the same sweep. However, this mode is intended to be used where the input frequency is much lower than the rate at which the channels are switched.

3-17. ALTERNATE. In this mode the two channels are presented on alternate sweeps. For accurate time or phase comparisons, use an external triggering signal.

3-18. DIFFERENTIAL OPERATION.

3-19. Since both inputs are fed to the Channel A amplifier in this mode of operation, only the difference between the two inputs will be displayed on the screen. Therefore any signal on both channels which is equal in phase and amplitude (common mode signal) will be rejected. Use differential mode where measurements are made in the presence of hum or other unwanted pickup. A step-by-step operating procedure for A-B is outlined in figure 3-5.

Note

For greatest rejection of common-mode signals, set both channels to the same sensitivity.

3-20. INPUT CONSIDERATIONS.

3-21. ACCESSORY PROBES. To preserve the bandwidth capabilities of the Model 162B, certain precautions must be observed. To avoid circuit loading and resultant waveform distortion, accessory probes may be used to increase the input impedance. The 10001A Probe supplied with the Model 160B/170A Oscilloscope presents an input of 10 megohms shunted by 10 pf and may be used over the 30 megacycle bandwidth of the Model 162B. When using the probe multiply the SENSITIVITY setting by 10.
$3-22$. When using the $10001 \mathrm{~A}(\mathrm{AC}-21 \mathrm{~A})$ or other accessory probes, it is necessary to compensate the probe for the input impedance of the amplifier. Without compensation, the probe will not divide accurately at high frequencies and waveforms will be distorted. For compensation adjustment refer to the 10001A (AC-21A) operating note.

3-23. AMPLIFIER OVERLOAD CAPABILITY. In certain situations it may be desired to observe with increased sensitivity a small part of a waveform. A signal as large as 18 cm (3 vertical screen diameters) may be applied to the input without causing noticeable distortion.

1. INPUT BNC connector accepts input signal.
2. AC-DC. Selects direct or capacitive coupling of the input signal.
3. SENSITIVITY and VERNIER. Set the deflection sensitivity of the trace. SENSITIVITY is calibrated when VERNIER is rotated completely clockwise into its detented position.
4. SENS. CAL. Sets calibration of SENSITIVITY.
5. BAL. Compensates for trace shift when VERNIER is operated.
6. VERTICAL POSITION. Positions the trace vertically.
7. POLARITY. Selects the more positive (+UP) or more negative (-UP) voltage for upward deflection.
8. Vertical Presentation. Selects mode of operation.

9. Set SWEEP TIME to $0.5 \mathrm{msec} / \mathrm{cm}$.
10. Set HORIZONTAL DISPLAY to INTERNAL SWEEP X1.
11. Set TRIGGER SOURCE to INT.
12. Set SWEEP MODE to PRESET.
13. Set TRIGGER LEVEL to 0 .
14. Connect probe or cable to Channel A INPUT.
15. Select CHANNEL A.
16. In Model 160B set CALIBRATOR to 10.

In Model 170A set CALIBRATOR to 20.
9. Connect probe or cable to calibrator VOLTS connector.
10. In Model 160B set SENSITIVITY to 2 volts/cm. In Model 170A set SENSITIVITY to 5 volts $/ \mathrm{cm}$.

Note

If using 10:1 divider probe, divide SENSITIVITY settings by 10 .
11. Set VERNIER to CALIBRATED.
12. In Model 160B adjust SENS. CAL. for a display exactly 5 cm . high.

In Model 170A adjust SENS. CAL. for a display exactly 4 cm. high.
13. Disconnect calibrator.
14. Set SWEEP MODE to FREE RUN.
15. Adjust BAL. for no vertical movement of trace as VERNIER is rotated.
16. Repeat steps 6 through 15 for Channel B.

Figure 3-2. Bal. and Sens. Cal. Adjustment

1. Connect signal to channel A INPUT.
2. Select CHANNEL A.
3. Set SENSITIVITY as desired. For calibrated sensitivity set VERNIER to CALIBRATED.
4. Select AC or DC coupling as desired.
5. Set POLARITY to +UP or -UP as desired.
6. Adjust VERTICAL POSITION as desired.

Note

Corresponding steps are the same for channel B operation.

Figure 3-3. Single Trace Operation

1. Connect one signal to channel A INPUT, and set channel A controls as desired (procedure shown in figure 3-4).
2. Connect the second signal to channel B INPUT and set channel B controls as desired.
3. Select CHOPPED for display of both signals during the same sweep, or ALTERNATE for display of signals on alternate sweeps. (CHOPPED is suitable for slower sweep rates, ALTERNATE for fast sweep rates.)

Note
For accurate time or phase difference measurements use external triggering.

Figure 3-4. Dual Trace Operation

1. Select A-B.
2. Set channel A POLARITY to +UP for A-B or -UP for B-A presentation.
3. Connect one signal to channel A INPUT.
4. Connect second signal to channel B INPUT.
5. Set SENSITIVITY as desired. For greatest rejection of common mode signals set both channels to the same sensitivity.
6. Adjust VERTICAL POSITION as desired.

Note

Channel B VERTICAL POSITION, POLARITY, and VERNIER are inoperative in A-B mode.

Figures 4-1 and 4-2

Figure 4-1. Dual Trace Amplifier Block Diagram

Figure 4-2. Attenuator Simplified Schematic

SECTION IV PRINCIPLES OF OPERATION

4-1. INTRODUCTION.

4-2. The Model 162B is a wide-band, calibrated vertical amplifier consisting of two independent channels which may be selected for separate or combined viewing. As shown in figure 4-1 the Model 162B basically consists of a frequency-compensated attenuator and a differential amplifier in each channel. The output of each channel is combined in the output to the main oscilloscope vertical amplifier. The channels are turned on or off by a switching multivibrator whose function is controlled by the Vertical Presentation switch.

4-3. CIRCUIT DETAILS

4-4. The two channels in the Model 162B are identical in function, so only channel A will be discussed in detail.

4-5. INPUT ATTENUATOR. The input attenuator consists of two cascaded voltage dividers which are compensated by shunt capacitors so that their division ratio is constant over the entire frequency range of
the instrument. A simplified schematic of the attenuator is shown in figure 4-2. The first section has division ratios of $1,1 / 10$, and $1 / 100$, while the following section has division ratios of $1,1 / 2$, and $1 / 4$. This combination of ratios divides the input signal to the most sensitive range $(0.05 \mathrm{v} / \mathrm{cm})$. The output of the channel A attenuator is fed through channel A POLARITY switch S103 to input cathode follower V101. The output of the channel B attenuator is fed through vertical presentation switch S301 ahead of channel B POLARITY switch S203 to allow A-B presentation.

4-6. INPUT CATHODE FOLLOWER. As shown in figure 4-3, the output of the attenuator is fed to the cathode follower V101 which serves as an impedance transformer and isolates the attenuator and input from the rest of the amplifier. In all modes of operation except A-B, V101A carries the signal from the attenuator to the grid of differential amplifier V102A, while V101B sets the dc bias for the grid of V102B. In A-B both V101A and V101B carry the signal to V102A/B. The BAL. control R104 adjusts the plate current distribution of V101A and V101B and also the de level of the grids of V102. Further discussion of the use of this control is found in paragraph 4-8.

Figure 4-3. Amplifier Simplified Schematic

4-7. DIFFERENTIAL AMPLIFIER. Differential amplifier V102A/B amplifies the signal from cathode follower V101A/B and converts it from a single-ended signal to the balanced signal necessary for the main vertical amplifier. In any operating mode other than $A-B$, the grid of V102B is fixed at a dc level set by cathode follower V101B. When a signal appears at the grid of V102A it is amplified and appears as a signal at the plate. At the same time a signal appears at the cathode of V102A. Since the cathodes of the two halves of V102 are tied together this signal appears between the cathode and grid of V102B. This differential signal is also amplified and appears at the plate of V102B as a signal opposite in polarity to the signal on the plate of V102A. In the A-B mode, the signal from the channel A attenuator is switched to V102A and the signal from the channel B attenuator is switched to V102B. The operation of the differential amplifier in this mode is similar to that described above: a signal appears at the grid of V102A and is amplified; the same signal appears at the cathode, but since another signal now appears at the grid of V102B only the difference signal between channel A and channel B is amplified. Therefore, any signal which appears at both grids with the same phase and amplitude (common mode) will not appear in the output.

4-8. With VERNIER control R123 in CALIBRATED the cathode of V102A and V102B are tied together. When R123 is rotated out of the CALIBRATED position resistance is inserted between the cathodes. This resistance acts as degenerative feedback and lowers the gain of the stage, giving the desired control of the deflection sensitivity. If the two halves of the tube were identical and R111 and R112 had exactly the same value, then R123 would have no effect on the dc balance of the differential amplifier. However, since these components are not identical, BAL. control R104 adjusts the operating point of the differential amplifier stages so that the two cathode voltages are equal and no current flows through R123 to change the balance of the stage and move the vertical position of the trace. A means of bringing the SENSITIVITY scales into calibration is provided by SENS. CAL. control R120. This control acts as a voltage divider with R113 and R114, changing the operating point of V102 toward lower plate current, lowering the transconductance and the gain. In this manner the entire vertical amplifier may be brought into calibration.

4-9. OUTPUT CATHODE FOLLOWER. The output of differential amplifier V102 is connected through coupling networks R121-L103 and R122-L104 to the grids of output cathode follower V103. These networks are necessary to compensate for differences in the frequency response of the two channels due to switch and wiring capacitance. These networks are not used in the channel B amplifier.

4-10. To achieve control over the vertical trace position, VERTICAL POSITION control R127-128 varies the de bias in the grid circuit of V103. This in turn varies the cathode voltage of V103, and thus the vertical position of the trace.

4-11. CONSTANT CURRENT GENERATOR. The ac signal is coupled to the output through C307 and C308, but the de signal is reduced in level from +75 volts at the cathode of V103A to approximately zero volts at the output. Referring to figure 4-4, the grid of V303A is biased by voltage divider R320-321 to -32 volts. This fixed bias, along with cathode bias resistor R318, regulates the tube at a constant plate current. Since V303A draws constant current through R310, an increase in de level will not change the drop across R310 and the dc signal will appear at the output unattenuated. Positive feedback from the input through R312 compensates for the voltage division by R308 and the 1 megohm resistor in the input of the main vertical amplifier. R308 isolates the output from the capacitance of V303A.

4-12. Vert. Pos. Adj. R319 acts as a coarse vertical position control and allows centering of the range of VERTICAL POSITION control R127-128. Potentiometer R19 adjusts the cathode voltage of V303A and thereby adjusts the dc level at the plate of V303A, resulting in the same effect as adjustment of R127-128.

4-13. ELECTRONIC SWITCH.

4-14. The output of each channel is controlled by switching multivibrator V302, shown in figure 4-5. When V302A conducts, its plate voltage is approximately +45 volts, forward-biasing diode CR301. The conduction of CR301 pulls the plates of V102 (and therefore the grids of V103) to approximately +60 volts, cutting off V103. With V103 in a cutoff condition, no signal from channel A appears in the

Figure 4-4. Constant Current Generator
output. Conversely, when V302B is not conducting, its plate voltage is approximately +100 volts, which reverse-biases diode CR302 and channel B operates normally. The conducting or non-conducting states of V302 are controlled by Vertical Presentation switch S301.

4-15. With S301 at CHANNEL A, negative bias is applied to the grid of V302A, diode CR301 is reverse
biased, and channel A operates normally. Set to CHANNEL B, S301 applies negative bias to the grid of V302B.

4-16. With S301 at CHOPPED, the multivibrator free runs at approximately 200 kc , alternately switching each channel on and off. The waveform at each plate of V302 is differentiated, and the positive spike is clipped. For V302A, the differentiation is by

Figure 4-5. Electronic Switch

C317-R350 and the clipping by CR303. For V302B, the differentiating-clipping network is C318-R351CR304. The negative spike from V302 is amplified and inverted by gate amplifier V301, and applied to the CRT as a blanking signal to blank the trace during the transition period when V302 is switching.

4-17. With S301 at ALTERNATE, negative bias is applied to both V302 grids, and V302 acts as a binary
triggered by signals from the oscilloscope sweep circuit. With this arrangement, each channel is presented on alternate sweeps.

4-18 With S301 at A-B, negative bias is applied to the grid of V302A, channel A operates normally, and channel B is turned off.

SECTION V
 MAINTENANCE

5-1. INTRODUCTION.

$5-2$. This section contains information for the adjustment and repair of the Model 162B along with step-by-step procedures for checking performance and making necessary adjustments.

5-3. PERFORMANCE CHECK.

5-4. The performance check indicated in this section may be used as a routine maintenance procedure or as an incoming inspection to verify the performance of the instrument against its specifications.

5-5. REQUIRED TEST EQUIPMENT. The instruments required for the performance check are items 1 through 4 listed in table $5-1$. If the recommended equipment is not available, equipment with similar characteristics may be substituted.

b. Set horizontal plug-in controls:

Model 166A: SWEEP OCCURRENCE . . . NORMAL
Model 166D: SWEEP SELECTOR . . MAIN SWEEP
Model 166C: FUNCTION OFF
Model 166B: TIME MARKER OFF

Table 5-1. Recommended Test Equipment

Item	Instrument Type	Required Characteristics	Measurement/ Adjustment	Ref Paragraph	Recommended Instrument
1	Signal Generator	Frequency: 50 kc to 30 mc Output: 0.3 to 5 v p-p into 50 ohms, constant with frequency	Common Mode Rejection Bandwidth	$\begin{aligned} & 5-13 \\ & 5-15 \end{aligned}$	(59) Model 606A
2	Voltmeter Calibrator	$\begin{aligned} & \text { Output: } 0.2 \text { to } 100 \mathrm{v} \text { p-p } \\ & \text { + and }-0.5 \mathrm{vdc} \\ & \text { Accuracy: } \pm 0.5 \% \end{aligned}$	Sensitivity Calibration Vertical Position Range SENS. CAL.	$\begin{aligned} & 5-10 \\ & 5-11 \\ & 5-31 \end{aligned}$	(42) Model 738AR
3	Pulse Generator	Output: 0.25 volts into 50 ohms Rise Time: 3 nsec or less	Rise Time Pulse Response	$\begin{aligned} & 5-14 \\ & 5-37 \end{aligned}$	Tektronix Type 107 Square Wave Generator
4	Coaxial Termination	Impedance: 50 ohms VSWR: 1.05 max.	Rise Time Bandwidth Pulse Response	$\begin{aligned} & 5-14 \\ & 5-15 \\ & 5-37 \end{aligned}$	(54) Model 908A
5	Square Wave Generator	Output: 0.25 to 60 V Frequency: 1 kc and 10 kc	Frequency Compensation	$\begin{aligned} & 5-34 \\ & 5-36 \\ & 5-37 \end{aligned}$	(4) Model 211A
6	Alignment Attenuator		Input Capacitance	$\begin{aligned} & 5-34 \\ & 5-36 \end{aligned}$	(48) Model 10403A
7	Extender		Extends plug-in outside oscilloscope		(79) Model 10400A

c. On Model 162B set controls as follows:
Set: AC-DC. AC
SENSITIVITY 20 volts/cm
VERNIER CALIBRATED
POLARITY +UP
Vertical Presentation CHANNEL A

5-7. SINGLE CHANNEL OPERATION.

a. Position the trace at the top of the graticule with channel A VERTICAL POSITION.
b. Channel B controls should move the trace less than 0.2 cm .
c. Set Vertical Presentation to CHANNEL B.
d. Position the trace at the bottom of the graticule with channel B VERTICAL POSITION.
e. Channel A controls should move the trace less than 0.2 cm .

5-8. ALTERNATE OPERATION.

a. Set Vertical Presentation to ALTERNATE.
b. Set SWEEP TIME to $0.1 \mathrm{sec} / \mathrm{cm}$.
c. Channel A and channel B traces should be displayed on alternate sweeps.

5-9. CHOPPED OPERATION.

a. Set: Vertical Presentation. CHOPPED SWEEP TIME $5 \mu \mathrm{sec} / \mathrm{cm}$ INTENSITY fully clockwise SWEEP MODE PRESET
b. A square wave with a frequency of approximately 200 kc should be displayed.
c. Return INTENSITY to normal level.

5-10. SENSITIVITY CALIBRATION.

a. Apply a 400 cycle, 0.2 volt peak-to-peak signal from the Voltmeter Calibrator to the channel A INPUT.
b. Set: Vertical Presentation CHANNEL A

SENSITIVITY 0.05 volts/cm
SWEEP TIME $2 \mathrm{msec} / \mathrm{cm}$
c. Set SENS. CAL. for display exactly 4 cm high.
d. Check the accuracy of all remaining SENSITIVITY ranges as shown in table 5-2.
e. Set: SENSITIVITY 20 volts/cm VERNIER fully counterclockwise
f. Set the voltmeter calibrator output to 100 volts peak-to-peak.
g. Display height should be less than 2 cm .
h. Repeat steps a through g for channel B.

5-11. VERTICAL POSITION RANGE.

a. Connect the Voltmeter Calibrator output to the channel A INPUT.
b. Set the Voltmeter Calibrator output to 0 volts.
c. Set: Vertical Presentation. CHANNEL A SWEEP MODE. FREE RUN SENSITIVITY 0.05 volts/cm
VERNIER CALIBRATED
AC-DC . DC
d. Center the trace with VERTICAL POSITION control.
e. Set the output of the Voltmeter Calibrator to +0.5 volts dc.
f. The VERTICAL POSITION control should bring the trace back to at least the first graticule line above center.
g. Set the output of the Voltmeter Calibrator to -0.5 volts dc.
h. The VERTICAL POSITION control should bring the trace back to at least the first graticule line above center.
i. Repeat steps a through h for channel B.

Table 5-2. Sensitivity Calibration

Sensitivity (Volts/cm)	Voltmeter Calibrator Output (Volts pk-pk)		Display Height (cm)	
	Model 160 B	Model 170A	Model 160B	Model 170A
.1	0.5	0.3	4.85 to 5.15	2.91 to 3.09
.2	1.0	0.5	4.85 to 5.15	2.42 to 2.58
.5	3.0	2.0	5.82 to 6.18	3.88 to 4.12
1	5.0	3.0	4.85 to 5.15	2.91 to 3.09
2	10.0	5.0	4.85 to 5.15	2.42 to 2.58
5	30.0	20.0	5.82 to 6.18	3.88 to 4.12
10	50.0	30.0	4.85 to 5.15	2.91 to 3.09
20	100.0	50.0	4.85 to 5.15	2.42 to 2.58

Table 5-3. Trouble Localization

SYMPTOM	CAUSE
Trace off screen: VER- TICAL POSITION will not bring it into view.	Unbalance (ref. para- graph 5-19)
Calibration low; SENS. CAL. will not bring am- plifier into calibration	Low gain; V101 (201), V102 (202), V103 (203) (ref. para. 5-20)
Improper CHOPPED or ALTERNATE operation	V301, 302. (ref. para. 5-21)

5-12. DYNAMIC RANGE.

a. Apply a 400 cycle, 0.9 volt peak-to-peak signal from the Voltmeter Calibrator to the channel A INPUT.
b. Set:

SENSITIVITY 0.05 volts/cm
VERNIER CALIBRATED
Vertical Presentation CHANNEL A
c. No distortion should be evident on any part of the waveform.
d. Repeat steps a through c for channel B .
e. Disconnect the Voltmeter Calibrator.

5-13. COMMON MODE REJECTION.

a. Apply a 1 mc signal from the Signal Generator to both channel A and channel B INPUT connectors.
b. Set:

Vertical Presentation. ALTERNATE Channel A and B SENSITIVITY. . 5 volts/cm Channel A and B VERNIER . . CALIBRATED
c. Adjust Signal Generator output for 1 cm display on both traces.
d. Set:

Vertical Presentation. ALTERNATE Channel A and B SENSITIVITY . . 0.5 volts/cm
e. Display height should not be greater than 0.32 cm .
f. Set both SENSITIVITY controls to 0.05 voits/ cm .
g. Display height should not be greater than 1 cm .
h. Disconnect the Signal Generator.

5-14. RISE TIME.

a. Apply a signal from the Pulse Generator to the channel A INPUT, terminating the connecting cable with the Coaxial Termination.
b. Set:

Vertical Presentation CHANNEL A
SENSITIVITY 0.05 volts/cm
VERNIER CALIBRATED
SWEEP TIME 0.1 . 1 sec/ cm
HORIZONTAL DISPLAY . . . INT SWEEP X10
TRIGGER SLOPE +
c. Adjust the Pulse Generator output for 5 cm display height (4 cm in Model 170A).
d. The rise time between the 10% and 90% points should be less than 23 nanoseconds (12 nanoseconds in Model 170A).
e. Repeat steps a through d for channel B.
f. Disconnect the Pulse Generator.

5-15. BANDWIDTH.

a. Apply a 50 kc signal from the Signal Generator to the channel A INPUT, terminating the connecting cable with the Coaxial Termination.
b. Set: Vertical Presentation
CHANNEL A SENSITIVITY 0.05 volts/cm
VERNIER. CALIBRATED
c. Adjust the Signal Generator output for a display 6 cm high (4 cm in Model 170A).
d. Change the Signal Generator output frequency to 15 mc (30 mc in Model 170A).
e. The display height should not be less than 4.2 cm (2.8 cm in Model 170A).
f. Repeat steps a through e for channel B.
g. Disconnect the Signal Generator.

5-16. TROUBLESHOOTING.

$5-17$. The following paragraphs outline procedures for the localization and clearance of troubles. Be sure that the trouble cannot be cleared by making an adjustment. Waveforms and dc voltage levels are shown on the amplifier schematic, figure 5-10.
$5-18$. TROUBLE LOCALIZATION. The initial action in locating the source of improper operation is to determine which part of the circuit is at fault. Table 5-3 lists operational faults and the circuits which may be the cause.

5-19. UNBALANCE. If the amplifier is operating properly, both halves of each stage will have equal grid, cathode, and plate voltages. Any component failure will affect this balance, usually causing the trace to be off-screen. Table 5-4 gives a systematic method of forcing balance in each stage by shorting grid-to-grid, cathode-to-cathode, etc. in each stage thereby pinpointing the source of the unbalance.

5-20. LOW GAIN. The gain of the amplifier with VERNIER in CALIBRATED is normally four. If the gain falls much below this value it will not be possible to calibrate the amplifier with the SENS. CAL control. The table of waveforms on the amplifier schematic, figure 5-10, shows the voltage gain of each stage for a 10 volt calibrator input. To locate the trouble, trace the calibrator signal from the input through each successive stage until the faulty stage is found.

5-21. IMPROPER DUAL-TRACE OPERATION. Any trouble involving CHOPPED or ALTERNATE operation can be traced to V301, V302 and associated circuitry. The amplifier schematic, figure $5-10$, shows the waveforms for both modes of operation.

Table 5-4. Unbalance

Short Together	Effect	Fault
Pins 1 and 9 of P301	trace centers trace does not center	Model 162B Model 160B/170A
Pins 3 and 8 of V103	trace centers trace does not center	input and differen- tial amplifier R319 or V303
Pins 2 and 7 of V103	trace centers trace does not center	V101, 102 V103
Pins 2 and 7 of V102	trace centers trace does not center	V101
Pins 2 and 7 of V102	trace does not center	V101 or R104

Note: Same procedure may be used for channel B.

5-2 2. REPAIR.

$5-23$. If replacement of components on the etched circuit boards proves necessary, follow the general procedure outlined below:
a. To remove components from the board use a low-wattage soldering iron such as Ungar \#1235 heating unit with \#776 handle and \#PL333 tip. Apply just enough heat to melt the solder and remove the component.
b. After the component has been removed, clear the hole by melting the solder and inserting a wooden toothpick in the hole.

Note

Using a metal tool may damage the plating in the hole.
c. Bend the leads of the new component to the proper spacing and insert in the board. Apply solder from the side of the board opposite the component.

Note

Excessive heat may lift an isolated conductor pad from the board. If this occurs, solder the connection from the component side of the board.
d. Use pliers as a heat sink when soldering semiconductor diodes. Grip the leads close to the diode body.
e. To remove components with multiple connections such as potentiometers or tube sockets clip the pins with pliers and remove each pin separately, or use a re-soldering tip such as Ungar \#855 on the soldering iron.
5-24. Table 5-5 lists the adjustments recommended after replacement of tubes or diodes.

5-25. LOCATION OF PARTS. Figures 5-1 through 5-4 show the location of components not part of an assembly. These components are listed by reference designator and cross-referenced in table 6-1. Table 6-1 lists all components included in each assembly, and these components are for the most part identified by silkscreening or by panel engraving.

Figure 5-1. Parts Location, Channel A Attenuator

Figure 5-2. Parts Location, Channel B Attenuator

Table 5-5. Recommended Adjustments Following Tube or Diode Replacement

Tube or Diode	Function	Adjustment	Ref. Paragraph
$\begin{aligned} & \text { CR101, } 102 \\ & 201,202 \end{aligned}$	AMPLIFIER Isolation Diode	None	
V101, 201	Input Cathode Follower	Bal.	5-31
V102, 202	Differential Amplifier	Bal. GAIN Vert. Pos. Adj. Pulse Resp.	$\begin{aligned} & 5-31 \\ & 5-34 \\ & 5-32 \\ & 5-38 \end{aligned}$
V103, 203	Output Cathode Follower	Chan. Bal.	5-33
V303	Constant-Current Generator	Vert. Pos, Adj.	5-32
CR301, 302	ELECTRONIC SWITCH Switch Diode	None	
CR303, 304	Clipper Diode	None	
V301	Gate Amplifier	None	
V302	Switching Multivibrator	None	

Figure 5-3. Parts Location, Top

Figure 5-4. Part, Location, Left Side

Figure 5-5. Amplifier Input Capacitance Adjustment Location

5-26. ADJUSTMENTS.

$5-27$. The following paragraphs outline procedures for adjusting the calibration, balance, and frequency compensation of the Model 162B.
$5-28$. The oscilloscope cabinet must be removed in order to reach the adjustments described in the following paragraphs. To remove the cabinet, unscrew the four large bolts at the rear of the cabinet, and disconnect the power cord connector. Set the instrument down with the panel down and slide the cabinet off. Set the instrument upright and reconnect the power cord.

Note

In order to make the adjustments properly in the Model 162B, the Model 160B/170A in which it is installed must have been previously adjusted for optimum performance.

5-29. REQUIRED TEST EQUIPMENT. The instruments required to make the adjustments in the following paragraphs are items 2 through 6 listed in table 5-1.

[^0]b. On horizontal plug-ins make the following settings:

Model 166A: SWEEP OCCURRENCE . . . NORMAL
Model 166B: SWEEP SELECTOR . MAIN SWEEP
Model 166C: FUNCTION OFF
Model 166B: TIME MARKER OFF
5-31. BAL. ADJUSTMENT. For BAL. adjustment, refer to figure 3-2.

5-32. VERTICAL POSITION.
a. Set Vertical Presentation to ALTERNATE.
b. Mechanically center channel A and channel B VERTICAL POSITION controls.
c. Adjust R319, Vert Pos Adj, so that both traces are centered or symmetrical about the center of the graticule.

5-33. GAIN.

a. Apply a .3 volt (. 2 volt in Model 170A) peak-to-peak signal from the voltmeter calibrator to the channel A INPUT.

> b. Set: Vertical Presentation SENSITIVITY VERNIER CALIBRATED VERTICAL POSITION centered
> c. Adjust SENS. CAL. for a display exactly 6 cm . high (4 cm high in Model 170A).
> d. Repeat steps a through d for channel B.
> e. Disconnect the Voltmeter Calibrator.

CHANNEL A 0.05 volts/cm.

5-34. AMPLIFIER INPUT CAPACITANCE.

a. Apply a 1 kc signal from the Square Wave Generator through the Alignment Attenuator to the channel B INPUT.
b. Set: SWEEP TIME $0.5 \mathrm{msec} / \mathrm{cm}$
SWEEP MODE PRESET Channel A SENSITIVITY 5 volts/cm VERNIER. CALIBRATED Channel B SENSITIVITY 0.05 volts/cm VERNIER CALIBRATED
c. Adjust the output of the Square Wave Generator for 5 to 6 cm display height (4 cm in Model 170A).
d. Set: Vertical Presentation CHANNEL B
Channel B POLARITY +UP
e. Adjust C201 for best square wave (figure 5-5).
f. Set: Channel B POLARITY -UP
g. Adjust C202 for best square wave.
h. Set: Vertical Presentation A-B

Channel A POLARITY +UP
i. Adjust C101 for best square wave.
j. Set: Channel A POLARITY. -UP
k. Adjust C102 for best square wave.
m . Disconnect Alignment Attenuator and Square Wave Generator from channel B INPUT and connect them to channel A INPUT.
n. Set: Vertical Presentation

CHANNEL A
SENSITIVITY 0.05 volts/cm
p. Adjust C132 for the best square wave.
q. Disconnect Alignment Attenuator and Square Wave Generator.

5-35. ATTENUATOR COMPENSATION.

a. Apply a 10 kc signal from the Square Wave Generator to the Channel A INPUT.
b. Set: Vertical Presentation CHANNEL A
SENSITIVITY 0.1 volts/cm
VERNIER CALIBRATED
SWEEP TIME $50 \quad \mu \mathrm{sec} / \mathrm{cm}$
c. Adjust the Square Wave Generator output for 5 to 6 cm trace height (4 cm in Model 170A).
d. Adjust capacitors as shown in table 5-6 for best square wave (figure 5-6).
e. Repeat steps a through d for channel B.

f. Disconnect Square Wave Generator.

Figure 5-6. Attenuator Compensation Adjustment Location

Table 5-6. Attenuator Compensation

SENSITIVITY	ADJUST	
(volts/cm.)	Channel A	Channel B
.1	C 123	C 223
.2	C 127	C 227
.5	C 113	C 213
1	C 121	C 221
2	C 125	C 225
5	C 117	C 217

5-36. ATTENUATOR INPUT CAPACITANCE.

a. Apply a 1 kc signal from the square Wave Generator through the Alignment Attenuator to the Channel A INPUT.
b. Set: Vertical Presentation CHANNEL A SENSITIVITY 0.5 volts/cm
SWEEP TIME $0.5 \mathrm{msec} / \mathrm{cm}$
c. Adjust the output of the Square Wave Generator from 5 to 6 cm trace height (4 cm in Model 170A).

Figure 5-7. Attenuator Input Capacitance Adjustment Location

Table 5-7. Attenuator Input Capacitance

SENSITIVITY	ADJUST	
(volts/cm.)	Channel A	Channel B
.5	C111	C211
5	C115	C215

d. Adjust capacitors as shown in table 5-7 for best square wave (figure 5-7).
e. Repeat steps a through d for channel B.
f. Disconnect Alignment Attenuator and Square Wave Generator.

5-37. PULSE RESPONSE.

a. Apply a signal from the Pulse Generator to the channel A INPUT, terminating the connecting cable with the Coaxial Termination.
b. Set: Vertical Presentation CHANNEL A SENSITIVITY 0.05 volts/cm
SWEEP TIME $0.1 \mu \mathrm{sec} / \mathrm{cm}$
c. Adjust the output of the Pulse Generator for a trace height approximately 5 cm high (4 cm in Model 170A).
d. Adjust L101 and L102, Hi Freq Adj for a pulse response with a rise time of 9 nanoseconds or less and less than 1% overshoot (figure 5-8).
e. Repeat steps a through d for channel B. Adjust L201 and L202.
f. Disconnect Pulse Generator.

Figure 5-8. Pulse Response Adjustment Location

1. All values in ohms, microhenries, and picofarads unless otherwise noted.
2. Titles enclosed in boxes indicated front-panel engraving.
3. Conditions of measurement for dc voltages as follows:
a. Vertical Presentation-CHANNEL A.
b. VERTICAL POSITION- center of range.
c. POLARITY- +UP.
d. SENSITIVITY- $0.1 \mathrm{v} / \mathrm{cm}$.
e. VERNIER- CALIBRATED.
f. $A C-D C-D C$
g. No signal input

Figure 5-9. Attenuator Schematic
5-10

SECTION VI
 REPLACEABLE PARTS

6-1. INTRODUCTION.

$6-2$. This section contains information for ordering replacement parts. Table 6-1 lists parts in alphanumerical order of their reference designators and indicates the description and (40) stock number of each part, together with any applicable notes. Table 6-2 lists parts in alpha-numerical order of their ${ }^{\text {bo }}$ stock numbers and provides the following information on each part:
a. Description of the part (see list of abbreviations below)
b. Typical manufacturer of the part in a five-digit code; see list of manufacturers in appendix.
c. Manufacturer's stock number.
d. Total quantity used in the instrument (TQ column).
e. Recommended spare part quantity for complete maintenance during one year of isolated service (RS column).

6-3. Miscellaneous parts not indexed in table 6-1 are listed at the end of table 6-2.

6-4. ORDERING INFORMATION.

6-5. To order a replacement part, address order or inquiry either to your authorized Hewlett-Packard sales representative or to

CUSTOMER SERVICE

Hewlett-Packard Company
395 Page Mill Road
Palo Alto, California
or, in Western Europe, to
Hewlett-Packard S.A.
54-54bis Route des Acacias
Geneva, Switzerland
6-6. Specify the following information for each part:
a. Model and complete serial number of instrument.
b. Hewlett-Packard stock number.
c. Circuit reference designator.
d. Description.

6-7. To order a part not listed in tables 6-1 and 6-2, give a complete description of the part and include its function and location.

A	= assembly	F	= fuse	P	= plug	V	= vacuum tube, neon
B	$=$ motor	FL	= filter	Q	$=$ transistor		bulb, photocell, etc.
C	= capacitor	J	$=\mathrm{jack}$	R	= resistor	W	= cable
CR	$=$ diode	K	= relay	RT	$=$ thermistor	X	= socket
DL	= delay line	L	$=$ inductor	S	$=$ switch	Y	= crystal
DS	$=$ device signaling (lamp)	M	$=$ meter	T	$=$ transformer	Z	= network
E	$=$ misc electronic part	MP	= mechanical part				

$\left.\begin{array}{lllll}\text { A }=\text { assembly } & \text { F } & =\text { fuse } & \text { P } & \text { plug } \\ \text { B }=\text { motor } & \text { FL } & =\text { filter } & \text { Q } & \text { = transistor }\end{array}\right)$

REFERENCE DESIGNATORS

$\mathrm{A}=$ amperes	$\mathrm{F}=$ farads
$\mathrm{BP}=$ bandpass BWO = backward wave oscillator	FXD $=$ fixed
	$\mathrm{GE}=$ germanium
	GL $=$ glass
CER $=$ ceramic	GRD $=$ ground(ed)
CMO = cabinet mount only	
COEF $=$ coefficient	$\mathrm{H}=$ henries
COM $=$ common	HG $=$ mercury
COMP composition	HR = hour (s)
CONN $=$ connection CRT = cathode-ray tube	
	IMPG $=$ impregnated
	INCD $=$ incandescent
DEPC $=$ deposited carbon	INS = insulation(ed)
EIA $=$ Tubes or transistors meeting Electronic	$=$ kilo $=1000$
	LIN $=$ linear taper
tion standards will normally result in	LOG $=$ logarithmic taper
instrument operating	
within specifications;	MEG $=\mathrm{meg}=10^{6}$
i ${ }^{\text {a }}$ Selected for best	$\mathrm{M}=$ milli $=10^{-3}$
selected for best performance will be	MINAT $=$ minature
ㄷ supplied if ordered	METFLM $=$ metal film
by ${ }^{6} 7$ stock numbers.	MFR $=$ manufacturer
ELECT = electrolytic	MTG $=$ mounting
ENCAP $=$ encapsulated	MY $=$ mylar

ABBREVIATIONS

	= normally closed
NE	$=$ neon
NO	= normally open
NPO	= negative positive zero (zero temperature coefficient)
NSR	= not separately replaceable
$\begin{aligned} & \mathrm{OBD} \\ & \mathrm{OX} \end{aligned}$	$\begin{aligned} & =\text { order by description } \\ & =\text { oxide } \end{aligned}$
P	= peak
PC	= printed circuit board
PF	$\begin{aligned} = & \text { picofarads }= \\ & 10^{-12} \text { farads } \end{aligned}$
PP	= peak-to-peak
PIV	= peak inverse voltage
POR	= porcelain
POS	= position(s)
POLY	$=$ polystyrene
POT	= potentiometer
RECT	$=$ rectifier
ROT	= rotary
RMS	= root-mean-square
RMO	$=$ rack mount only

S-B	= slow-blow
SE	= selenium
SEC ${ }^{\text {T}}$	= section(s)
SI	$=$ silicon
SIL	= silver
SL	= slide
SPL	= special
TA	= tantalum
TD	= time delay
TI	$=$ titanium dioxide
TOG	$=$ toggle
TOL	$=$ tolerance
TRIM	= trimmer
TWT	$=$ traveling wave tube
U	$=$ micro $=10^{-6}$
VAC	= vacuum
VAR	= variable
W/	= with
W	= watts
WW	= wirewound
W/O	= without
	$=$ optimum value selected at factory, average value shown (part may be omitted)

Table 6-1. Reference Designation Index

\# See introduction to this section

Table 6-1. Reference Designation Index (Cont'd)

\# See introduction to this section

Table 6-1. Reference Designation Index (Cont' d)

Circuit Reference	(7) Stock No.	Description	Note
CR301	1910-C014	CIODE: SEMICCN DEVICE FOR HU2-162B UNLY	
CR302	1910-0016	CIODE:SEMICCN DEVICE FOR 1A2B ONLY.	
CR302	1910-0014	UIODE:SEMICCIN CEVICE FOR HO2-1628 ONLY	
CR303 CR303	$1010-C 016$ $1910-C 014$	CIODE:SEMICCN DEVICE FOR 1 f2A ONLY. CIODE:SEMICCN DEVICE FOR HO2-1h2B ONLY	
CR304	1910-C016	OIOCE:SEMICCN LEVICE FOR 1620 OnLY.	
CR304	1910-C014	CIODE:SEMICON UEVICE FOR HO2-1628 ONLY	
$\checkmark 101$	1250-0.118	CONNECTCR:ENC	
\checkmark J 202 THPU		NCT ASSIGNEE:	
$J 201$	1250-0118	CONNECTOR:ENC	
Ll0	162F-60A	COIL:VAR -6-1.1	
L102	162F-60A	COIL:VAR -6-1.1	
L103	9140-0095	COIL FXD RF: 0.27 UHY	
L104	9140-0095	COIL FXC RF: 0.27 UHY	
L105	9140-0069	COIL FXD RF: 5.AUHY	
L106 THRU			
L200		NOT ASSIGNEL	
L201	$162 F-E O A$ $162 F-E O A$	COIL:IVAR .t-1.1 COIL:VAR . $6-1 \cdot 1$	
L203 THRU			
L204		NOT ASSIGNEL	
L205	9140-0069	COIL FXC RF: 5.6UHY	
P301	1251-C006	CONNECTCR:16 PIN	
R101	0684-1011	F:FXD COMF 100 CHMS 10\% $1 / 4 \mathrm{~W}$	
R102	0684-1011	R:FXD CCMP 100 CHMS $10 \% 1 / 4 \mathrm{w}$	
R103	0690-1521	R:FXD COMP 1500 OHMS 10\% 1 N	
R104	2100-C027	K:VAR COMP IUK OHM LUS LIN 2*	
R105	0761-0016	R:FXD MET FLM $7500 \mathrm{OHM} 5 \% 1 \%$	
R106	0761-0016	K:FXD MET FLM 7500 OHM 5\% IW	
R107	0684-5601	R:FXD CCMP So CHMS 10* $1 / 4 \mathrm{k}$	
R108 R109	$0684-5601$ $0757-0149$	F:FXD COMF 56 CHMS $10 \% 1 / 4 \mathrm{~h}$ F:FXD MET FLM 442 OHMS $1 * 1 / 2 \mathrm{~W}$	
R110	0757-0149	P:FXU MET FLM 442 OHMS 1* $1 / 2 \mathrm{~W}$	
R111	0764-C012	R:FXD MET FLM GROO OHN 5\% 2*	
R112	0764-0012	R:FXD MET FLM 6800 OHM 5* 2 W	
R113	0758-0018	F:FXO MET FLM 15K OHMS 5\% 1/2W	
R114	0758-0018	F:FXO MET FLM 15K OHMS 5\% 1/2w	
$\begin{aligned} & \text { R115 THRU } \\ & \text { K119 } \end{aligned}$		NOT ASSIGNEE	
R120	2100-0044	R:VAR COMP SOK CHM 10* LIN $2 *$	
R121	0684-1021	F:FXD COMP 100C OHMS 10* $1 / 4 *$	
R122	0684-1021	F:FXO COMF 1000 OHMS 10\% $1 / 4 \mathrm{k}$	
F 123	2100-0271	R:VAR COMF 1006 OFMS 20* CCi. 20\% LUG 1*	
R124	0687-1021	F:FXO CCMF 100 OHMS 10* 1/2w	
R125	0687-3931	K:FXD CCMF 39 K OHMS $10 \times 1 / 2 \mathrm{~K}$	
- 126	0687-3931	K:FXD CCMF 39K OHNS 10\% 1/2W NOT SEPARATELY FEPLACEABLE PART OF 5103	
R128		NOT SEPARATELY REFLACEABLF PART OFS 103	
K129	0484-5601	h:FXD COMF 56 UHMS 10x 1/4*	

Table 6-1.Reference Designation Index (Cont'd)

Circuit Reference	(10) Stock No.	Description	Note
R130	0684-5601	R:FXD COMF 56 OHMS 10\% $1 / 4 \mathrm{n}$	
R131	0687-3921	R:FXD COMP 3900 OHMS 10* $1 / 2 \%$	
R132	0687-4741	F:FXD COMP 470K OHMS 10* $1 / 2 \mathrm{*}$	
R13	0687-4741	R:FXD COMP 470K OHMS 10\% $1 / 2 \mathrm{~N}$	
ん149		NOT ASSIGNEL	
F 150	0757-0146	R:FXD MET FLM 89RK OHNS 1* 1/4*	
R151	0757-C142	R:FXD MET FLM 111K OHMS 1\% $1 / 4 \%$	
R152	0757-C147	R:FXD MET FLM 988K OHMS 1\% 1/4:	
K153	0757-0141	RIFXD MET FLM 10.1K OHMS i* $1 / 4 \%$	
R154	0684-6501	R:FXD COMP GE OHMS 10\% $1 / 44$	
R155 $R 156$	$0757-0144$	F:FXD MET FLM 499K OHMS $1 * 1 / 4 \%$	
R156	$0757-0148$	R\&FXD MET FLM 1 M OHMS $1 \% 1 / 4 \%$	
R157	0757-C145	R:FXD MET FLM 750 K OHMS $1 * 1 / 4 \mathrm{~W}$	
R158	0757-C143	R:FXD MET FLM 332 K OHMS $1 * 1 / 4 \mathrm{w}$	
R159	0757-C148	R:FXD MET FLM IN OHMS $1 \% 1 / 4 \mathrm{w}$	
K160	0687-1041	K:FXD COMF 100K OHMS 10\% 1/2w	
R161	0687-5641	R:FXD COMF 560K OHMS 10* 1/2*	
R162 R163 THRU	0698-0001	F:FXD COMP 4.7 OHM 5\% $1 / 2 \mathrm{w}$	
R200		NOT ASSIGNED	
R201	0684-1011	K:FXD CCMF 100 OHMS 10\% 1/4K	
R202	0684-1011	RIFXD COMP 1VO CHNS 10x 1/4k	
R2U3	0690-1521	R:FXD COMP 1500 OHMS $10 \% 1 \mathrm{k}$	
R204	2100-0027	R:VAR COMP IOK OHM 10\% LIN 2*	
K205	0761-0016	F: FFXD MET FLM 7500 OHM 5* 1*	
K206	0761-0010	R:FXD MET FLM 7500 OHM 5* iW	
R207	0484-5601	R:FXC COMP 56 OHMS 10\% 1/4w	
$\begin{aligned} & R 208 \\ & R 209 \end{aligned}$	0684-5601	FiFXD COMF 56 CHMS 10x $1 / 4 \mathrm{k}$ R:FFXD MET FLM 442 OHMS $1 \% 1 / 2 w$	
K210	0757-C149	R:FXD MET FLM 44\% OHINS is $1 / 2 \mathrm{w}$	
K<11	0764-0012	R: FFXD MET FLM 8800 OHN 5\% 2\%	
R212	0764-CO12	R:FXD MET FLM E.EOO OHM 5* 2 K	
R<13	0758-0018	R:FXD MET FLM 15K OHMS 5* 1/2w	
R214	0758-0018	R:FXD MET FLM 15 K OHMS 5\% $1 / 2 \mathrm{~W}$	
R215 R219		NOT ASSIGNEL	
R220	2100-0044	FiVAR COMP 50K CHM 10% LIN 2w	
R221 THRU			
R222			
$R 223$ $R 224$	2100-0271	R:VAR CCMF 1000 OHMS 20\% CCK 20* LOG IW R:FXD COMF 1000 OHMS 10\% 1/2w	
R225	0687-3931	R:FXD COMF 39K OHMS 10\% $1 / 2 \mathrm{~W}$	
R226	0687-3931	F: FXD COMP 39K OHMS 10\% $1 / 2 \mathrm{~K}$	
R227		NOT SEPARATELY REFLACEABLE PART UFS203	
R228		NOT SEPARATELY REPLACEABLF PART OFS203	
K229	0684-5601	R:FXO COMP 56 OHMS $10 \% 1 / 4 \mathrm{~K}$	
R230	0684-5601	P:FXD COMP 56 OHMS 10\% 1/4N	
R231	0687-3921	F:FXD COMF 390C OHMS 10\% 1/2*	
R232	0687-4741	F:FXD COMP 470K OHMS 10\% 1/2w	
R233	0687-4741	R:FXD CCMF 470 K OHMS $10 \% 1 / 2 *$	
$\begin{aligned} & \text { R234 THRU } \\ & \text { K249 } \end{aligned}$		NOT ASSIGNEC	

Table 6-1. Reference Designation Index (Cont'd)

Circuit Reference	(40) Stock No.	Description	Note
R250	0757-0146	R:FXD MET FLM B98K OHMS 1* 1/4W	
R251	0757-0142	R:FXD MET FLM 111 K OHMS 1\% $1 / 4 \mathrm{~W}$	
R252	0757-0147	R3FXD MET FLM 988K OHMS 1* 1/4W	
R253	0757-0141	RIFXD MET FLM 10.1K OHMS $1 \% 1 / 4 \mathrm{~W}$	
R254	0684-6801	RtFXD COMP 68 OHMS 10\% $1 / 4 \mathrm{w}$	
R255	0757-0144	R:FXD MET FLM 499K OHMS 1% 1/4W	
R256	0757-0148	RIFXD MET FLM 1M OHMS 1\% $1 / 4 \mathrm{~W}$	
R257	0757-0145	R:FXD MET FLM 750K OHMS 18 1/4W	
R258	0757-0143	RiFXD MET FLM 332K OHMS 18 1/4\%	
R259	0757-0148	R:FXD MET FLM 1 M OHMS $1 \% 1 / 4 \mathrm{w}$	
R260	0687-1041	RIFXD COMP 100K OMMS 10\% $1 / 2 \mathrm{w}$	
R261	0687-5641	R:FXD COMP 560K OHMS 10\% $1 / 2 \mathrm{w}$	
R262	0698-0001	R:FXD COMP 4.7 OHM 5\% 1/2w	
R263 THRU		NOT ASSIGNED	
R301	0776-0008	R:FXD 3900 OHM 5\% 7w	
R302 R306 R307		NOT ASSIGNED	
R307	0687-1031	R:FXD COMP 10K OHMS 10\% 1/2w	
$R 308$	0687-1031	R:FXD COMP IOK OHMS 10\% $1 / 2 \mathrm{~W}$	
R309	0757-0152	RIFXD MET FLM 93.1K OHMS 1* 0.5 W	
R310	$0757-0152$	R:FXD MET FLM 93.1K OHMS $1 \% 0.5 \mathrm{w}$	
R311	0757-0155	RIFXD MET FLM 604 K OHMS 180.5 W	
R312	0757-0155	R:FXD MET FLM 604K OHMS is 0.5 W	
R313	0767-0016	R:FXD 3.3K 5* 3w	
R314	0764-0012	R:FXD MET FLM 6800 OHM 5\% 2w	
R315	0764-0012	R:FXD MET FLM 6800 OHM 5\% 2 w	
2316		NOT ASSIGNED	
R317	0757-0151	RIFXD MET FLM 63.4K OHMS 1\% 0.5W	
R318	0757-0151	RIFXD MET FLM 63.4K OHMS $1 * 0.5 *$	
R319 R320	$\begin{aligned} & 2100-0207 \\ & 0757-0153 \end{aligned}$	RIVAR COMP 2500 OHMS 20* LIN 2w R:FXD MET FLM 100 K OHMS 180.5 W	
R321	0757-0150	RIFXD MET FLM 48.7K OHMS 1\% 0.5 W	
R322 THRU		NOT ASSIGNED	
R330	0687-2241	R:FXD COMP 220K OHMS 10\% 1/2w	
R331	0684-5601	RIFXD COMP 56 OHMS $10 \% 1 / 4 w$	
R332	0687-8211	R:FXD 820 OHM 10\% $1 / 2 \mathrm{~W}$	
R333	0765-0009	R2FXD 5.6K OHM 10\% 2 m	
R 334	0687-2241	R:FXD COMP 220K OHMS 10\% $1 / 2 \mathrm{w}$	
R335 R336	0684-5601	RIFXD COMP 56 OHMS $10 \% 1 / 4 \mathrm{~W}$ R:FXD 8.2K 10\% 2W	
$\begin{array}{ll} \text { R337 } \\ \text { R339 } \end{array} \text { THRU }$		NOT ASSIGNEC	
R340	0767-0018	R:FXD MET FLM 820 OHMS 5\% 3W	
R341	0767-0018	R:FXD MET FLM 820 OHMS 5\% 3w	
R 342	0758-0003	R:FXO MET FLM 1000 OHMS $5 \pm 1 / 2 w$	
R343	0758-0003	R:FXD MET FLM 1000 OHMS 5\%1/2w	
R344	0758-0006	RIFXD MET FLM 1OK OHMS 5\% 0.5W	
R345	0758-0006	R:FXD MET FLM 10K OHMS 5\% 0.5W	
R346	0757-0050	R:FXD MET FLM 200 K OHMS $1 \% 1 / 2 \mathrm{~W}$	

\# See introduction to this section

Table 6-1. Reference Designation Index

Table 6-1. Reference Designation Index (Cont'd)

\# See introduction to this section

Table 6-2. Replaceable Parts

(47) Stock No.	Description \#	Mfr.	Mfr. Part No.	TQ	RS
OBD	ASSY:VERTICAL PRESENTATION			1	1
G-732	TUEE:ELECTRON SELECTED 162B ONLY.			4	4
G-74AT	KNOB. POLARITY	28480	G-74AT	2	1
G-74AU	KNOB: VERNIER	28480	G-74AU	2	1
G-74BE	KNOB: VERTICAL POSITION	28480	G-748E	2	1
G-74BS	KNOB: VERTICAL PRESENTATION	28480	G-748S	2	1
G-74CA	KNOB: AC-DC	28480	G-74CA		1
G-74CA	KNOB: $A C-D C$	28480	G-74CA	1	1
G-74CE	KNOB:LOCK	28480	G-74CE	1	1
G-740	KNOB: SENSITIVITY	28480	G740	2	1
162B-34A	ASSY:CHANNEL A ATTENUATOR	28480	162B-34A	1	1
162B-34B	ASSY:CHANNEL B ATTENUATOR	28480	162B-34B	1	1
162F-60A	COIL:VAR OS-1.1	28480	162F-60A	4	1
162B-65A	ASSY:AMPLIFIER	28480	162B-65A	,	1
162B-65B	ASSY:SWITCH CIRCUIT	28480	162B-65B	1	1
0132-0006	CIVAR GL 0.7-3.0 PF 350 V	72982	535-034 34R	21	5
0140-0034	CIFXD MICA 22 PF 5\% 500 VDCW	76433	RCM15E220J	2	1
0140-0039	CIFXD 47PF 58 50UVDCW	04062	RCM15E 470J	2	1
0150-0012	C IFXD CER O.O1UF 20\% 1000VDCW	56289	H 1038	3	1
0150-0023	C:FXD CER 2000PF 20\% 1000VOCw	91418	TYPE JF .002 20\%	1	1
0150-0052	C PFXD 0.05 UF 20\% 400 VDCW	05729	$20 \times 503 \mathrm{MC4}$	4	1
0150-0059	C 3 FXD CER 3.3 PF +/- NPO 600 VLC*	72982	301 000 COJO 3396	2	1
0150-0063	C:FXD 10 PF 5\% 500VDCW	72982	CC20il000		1
0150-0069	C:FXD 1000PF 500VDCW	72982	801010×5	4	1
0150-0074	C:FXD CER 7 PF +/-.5PF 500 VDC	72982	301 OOO COHO 709D	4	1
0150-0089	C:FXD CER 4.7 PF +/-0.25 PF 500VOCW	72982	301011 COHO 479C	2	1
0150-0091	C:FXD CER $1.5 \mathrm{PFF}+/-0.25 \mathrm{PF} 500 \mathrm{VDCW}$	72982	301011 COKO 159C	1	1
0150-0115	C1FXD CER 27PF 10\% S00VDCW	71590	CC2O TCN 27	2	1
0160-0132	C IFXD CER 12PF 5\% 500VOCW	72982	TYPE 301	2	1
0160-0133	C:FXD MICA 500PF 10\% 500VDCW	72982	666003	2	1
0170-0022	C:FXD MY O.1UF 20\% 600VDCW	09134	TYPE 27	2	1
0170-0087	CIEXD -22UF 2C\% 200VDCw	24446		2	1
0684-1011	R:FXD COMP 100 OHMS 10\% $1 / 4 \mathrm{~m}$	01121	CB 1011	4	1
0684-1021	R:FXD COMP 1000 OHMS $10 \% 1 / 4 \mathrm{w}$	01121	CB 1021	2	1
0684-2221	R:FXD COMP 2200 OHMS 10\% 1/4w	01121	CB 2221	1	1
0684-5601	R:FXD COMP 56 OHMS 10\% 1/4w	01121	CB 5601	12	3
0684-5621	K:FXD 5600 OHM 10\% 1/4w	01121	CB 5021	1	1
0684-6801	R:FXD COMP 68 OHMS 10\% $1 / 4 \mathrm{~m}$	01121	CB 6801	2	1
0687-1021	R2FXD COMP 1000 OHMS 10\% $1 / 2 \mathrm{w}$	01121	EB 1021	2	1
0687-1031	R:FXD COMP 10 K OHMS $10 \% 1 / 2 \mathrm{~W}$	01121	EB 1031	2	1
0687-1041	R:FXD COMP 100K OHMS 108 1/2*	01121	EB 1041	2	
0687-1521	RIFXD COMP 1500 JHMS 10\% 1/2w	01121	EB 1521	1	1
0687-2201	K:FXD COMP 22 OHirs 10x 1/2w	01121	EB 2201	2	1
0687-2241	R:FXD COMP 220K OHMS 10\% $1 / 2 \mathrm{w}$	01121	EB 2241	2	1
0687-2731	R:FXD COMP 27K OTMS 10\% 1/2k	01121	EB 2731	2	1
0687-3921	R:FXD COMP 3900 OHMS $10 \% 1 / 2 w$	01121	EB-3921	2	
0687-3931	R:FXD COMP 39K OHMS 10* 1/2w	01121	EB 3931	4	1
0687-4731	R:FXD COMP 47K OHMS +/-10\% 1/2*	01121	EB4731	1	1
0687-4741	RIFXD COMP 470 K OHMS $10 \% \mathrm{l} / 2 \mathrm{w}$	01121	EB 4741	4	1
0687-5641	R:FXD COMP 560K UHMS 108 1/2*	01121	EB 5641	2	1

[^1]Table 6-2. Replaceable Parts (Cont'd)

(69) Stock No.	Description\#	Mfr	Mfr. Part No.	TQ	RS
0687-8211	R:FXD 820 OHM 106 1/2w	01121	EB8211	1	1
0690-1521	RIFXD COMP 1500 JHMS 10\% Im	01121	GB 1521	2	1
0698-0001	R:FXD COMP 4.7 OHM 5\% 1/2w	01121	E3 47G5	2	1
0757-0050	R:FXD MET FLM 2OUK OHMS 18 1/2m	19701	MF 1/2 T-0	2	1
0757-0141	R:FXL MET FLM 10.1K OHMS 1% 1/4w	75042	MEB-TO	2	1
0757-0142	R:FXD MET FLM 111K OHMS 1\% 1/4*	75042	MEB-TO	2	1
0757-0143	R:PXD MET FLM 33CK OHMS 1\% $1 / 4 \mathrm{~N}$	75042	MEB-TO	2	1
0757-0144	R:FXD MET FLM 493k OHMS 1\% 1/4m	75042	MEB-TO	2	1
0757-0145	R:FXD MET FLM 750K OHMS 1\% 1/4*	75042	MEB-TO	2	1
0757-0146	RifXD MET FLM 898K OHMS 1\% 1/4w	75042	MEB-TO	2	1
0757-0147	R:FXD MET FLM 988K OHMS 1\% 1/4*	75042	MEB-TO	2	1
0757-0148	R:FXD MET FLM 1 M OHMS $1 \% 1 / 4 \mathrm{w}$	75042	MEB-TO	4	1
0757-0149	R:FXD MET FLM 442 OHMS 1\% 1/2*	75042	MEC-TO	4	1
0757-0150	R:FXD MET FLM 48.7K OHMS $1 \% 0.5 \%$	75042	MEC-TO	1	1
0757-0151	RIFXD MET FLM 63.4K OHMS 1\% 0.5%	75042	MEC-TO	2	1
0757-0152	R:FXD MET FLM 93.1K OHMS 1\% 0.5w	75042	MEC-TO	2	1
0757-0153	R:FXD MET FLM 100K OHMS 1% C.5m	75042	MEC-TO	1	1
0757-0154	R:FXD MET FLM 287K OHMS 180.5*	75042	MEC-TO	2	1
0757-0155	R:FXD MET FLM 604K OHMS 1\% 0.5 \%	75042	MEC-TO	2	1
0758-0003	R:FXD MET FLM 10ンO OHMS 5\%1/2w	07115	C 20/1K-5\%-1/2*	2	1
0758-0006	R:FXD MET FLM 10K OHMS 5\% 0.5*	07115	C 20	2	1
0758-0018	R:FXD MET FLM 15K OHMS 5* 1/2\%	07115	C 20	4	1
0761-0016	R:FXD MET FLM 7500 OHM 5\% iw	07115	C 32	4	1
0764-0012	R:FXD MET FLM 6800 OHM 5* $2 W$	07115	C 42	6	2
0765-0005	R:FXD 8.2K 10\% 2w	07115	C425	1	1
0765-0009	R:FXD 5.6K OHM 10\$ 2w	07115	C-42	1	1
0767-0016	R:FXD 3.3K 5\% 3m	07115	LP1-3	1	1
0767-0018	R:FXD MET FLM 820 OHMS 5\% 3W	07115	LPI 3	2	1
0776-0008	R:FXD 3900 OHM 5\% 7w	07115	LP1-7	1	1
0812-0012	R:FXD 18 OHM 5\% 3w	94310	Rw59G 180	1	1
1200-0058	SOCKET: TUBE	91662	3901PHSPTD	6	2
1200-0062	SOCKET:TUEE 9 PIN MINIATURE	71785	1215111060	3	1
1250-0118	CONNECTOR:BNC	91737	8427	2	1
1251-0006	CONNECTOR:16 PIN	02660	26-4100-16P		1
1910-0014	UIOCE:SEMICON DEVICE FOR HO2-162B ONLY	03877	1N27	8	8
1910-0016	DIODE:SEMICON DEVICE FOR 1628 ONLY.	93332	02361	8	8
1932-0015	TUBE:ELECTRON 6922 FOR HO2-162E ONLY	73445	6922	9	9
1932-0022	ELECTRON TUBE: DUAL TRIODE 162 ENLY	73445	60J8/ECC 88	5	5
2100-0027	R:VAR COMP LOK OHM IUX LIN 2w	28480	21000027	2	1
2100-0044	RaVAR COMP 50K OHM 10\$ LIN 2w	28480	21000044		1
2100-0207	RiVAR COMP 2500 OHMS 20\% LIN 2\%	28480	21000207	1	1
2100-0271	R:VAR COMP 1000 UHMS 20\% CCW 20\% LOG 1w	28480	21000271	2	1
3100-0211	SWITCH ROTARY 1 SECT 2 POS	28480	31000211	2	1
3100-0349	SWITCH:ROTARY 2 SECT 9 POS	28480	31000349	2	1
3100-0350	SWITCHIROTARY 1 SECT 2 POS	28480	31000350	2	1
3100-0351	SWITCHIROTARY 1 SECT 5 POS S3CIA/B	28480	31000351	1	1
3100-0352	SWITCH:ROTARY 1 SECT 5 POS S3OIC-G.	28480	31000352	1	1
9140-0069	COIL FXD RF: 5.6UHY	95265	QA-5.6-P	2	1
9140-0095	COIL FXD RF: 0.27 HHY	28480	91400095	2	1

[^2]
[^0]: 5-20. PRELIMINARY SETTINGS.
 a. On the $160 \mathrm{~B} / 170 \mathrm{~A}$ make the following settings: Set: HORIZONTAL DISPLAY . INT. SWEEP X1 TRIGGER SOURCE INT TRIGGER LEVEL 0 SWEEP MODE. FREE RUN SWEEP TIME $1 \mathrm{msec} / \mathrm{cm}$. VERNIER CAL.

[^1]: \# See introduction to this section

[^2]: \# See introduction to this section

